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Multi-Person Hierarchical 3D Pose

Estimation in Natural Videos
Renshu Gu , Gaoang Wang , Zhongyu Jiang, and Jenq-Neng Hwang, Fellow, IEEE

Abstract— Despite the increasing need of analyzing human
poses on the street and in the wild, multi-person 3D pose
estimation using monocular static or moving camera in real-
world scenarios remains a challenge, either requiring large-scale
training data or high computation complexity due to the high
degrees of freedom in 3D human poses. We propose a novel
scheme to effectively track and hierarchically estimate 3D human
poses in natural videos in an efficient fashion. Without the need of
using labelled 3D training data, we formulate torso estimation as
a Perspective-N-Point (PNP) problem, and limb pose estimation
as an optimization problem, and hierarchically structure the
high dimensional poses to efficiently address the challenge.
Experiments show good performance and high efficiency of
multi-person 3D pose estimation on real-world videos, including
street scenarios and various human daily activities from fixed
and moving cameras, resulting in great new opportunities to
understand and predict human behaviors.

Index Terms— 3D human pose estimation, monocular camera,
hierarchical, human tracking, visual odometry, perspective-n-
point (PNP).

I. INTRODUCTION

ANALYZING human behaviors [46], [47] is one of the

most popular research topics in recent years. 3D human

pose estimation is central to analyzing human behaviors. Exist-

ing 3D human pose estimation calls for large-scale training

data or high computation complexity, due to the high degrees

of freedom in 3D human poses. In recent years, there have

been many reports on 3D human pose estimation in the

experimental setting. However, analysis is still lacking in

natural videos for both fixed and moving cameras. To address

the challenge in real-world applications, this paper proposes

a novel and efficient scheme to recover and track 3D full-

body human poses for multiple people from a monocular

fixed or moving camera.

A popular solution of estimating 3D human pose estimation

are deep learning methods that use powerful training from 3D

motion capture (MoCap) data [18], [19], [28], [30]. Yet, these

3D pose estimation methods cannot be easily applicable for

videos in the wild, since 3D MoCap training data are typically

acquired in the indoor controlled environments. The lack of
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large-scale training data in the wild for fixed or moving cam-

eras becomes a bottleneck. Moreover, existing methods might

over-fit to sparse camera settings and bear poor generalization

capabilities. Even with adequate training data, it is unclear

how the space of 3D poses can be uniformly sampled. In our

research, we thus decide not to rely on 3D MoCap ground

truth training data.

Moreover, many training methods focus on single-person

3D pose estimation with the subject being at the center of

the image, which makes it easy to associate estimated single-

person body joints along the time for subsequent action and

behavior analyses. On the other hand, it is much harder

to handle multi-person 3D pose estimation where people

can be interacting and occluding one another in real-world

images or videos. Also, temporal information is still not well

exploited in many of the existing works. These drawbacks

can lead to a performance drop for natural video human pose

estimation.

In this paper, we propose an efficient method to address the

challenges encountered in multi-person 3D human pose esti-

mation in natural videos from fixed or moving cameras. Our

proposed method allows to efficiently reconstruct 3D human

poses for multiple people in monocular image sequences with

arbitrary camera motion. Unlike existing methods that feature

high degrees of freedom (DoFs) in pose space, we structure

the pose space in a hierarchical fashion to tackle the problem

efficiently. It is achieved by utilizing recent advances in 2D

pose estimation, i.e. OpenPose [1], associating and tracking

multiple people to use temporal information, and then estimat-

ing each person’s 3D human poses hierarchically with body

geometric constraints. When estimating each person’s poses,

we apply a prior flexible human model that contains bone

lengths of all human body parts, which can be optimized.

Instead of trying to solve all the poses in high dimensions

simultaneously, we first estimate the torso pose, and then

estimate limb poses in a hierarchical fashion. Using 2D joints

of multiple people from OpenPose [1] as an intermediate step,

our method does not need to crop bounding boxes, and is

robust to position changes. We demonstrate that our method

can qualitatively produce smooth and natural 3D human poses

on real-world datasets, such as Kitti [2], ETH [3], DALY

[4] and UCLA HHOI [41], which are of high interest to

many applications. To also justify our estimation performance

quantitatively, we validate our performance on public dataset

Human3.6M [5] as well, which has the ground truth of all

joints on various human actions and is widely used in 3D

human pose estimation and action recognition. The flowchart

of our proposed system is shown in Fig. 1.
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Fig. 1. Overall flowchart of the proposed algorithm.

In summary, our major contributions are: (1) we propose

a pipeline that integrates visual odometry, 3D human pose

estimation, and exploit the temporal information using a pow-

erful tracking method. (2) We formulate the torso estimation

as a Perspective-N-Point (PNP) problem and provide a highly

efficient solution. For each limb, we formulate and solve an

optimization problem. With the hierarchical problem solving

structure, we greatly reduce complexity in high dimensional

pose space. Moreover, each limb will not interfere with one

another. (3) We design an effective occlusion handling strategy

utilizing keypoint confidence in case of missing or erroneous

2D human pose estimation. (4) We provide a variety of experi-

ments on natural videos containing multiple peoples from fixed

and moving cameras, which are lacking in the current literature

but critical in today’s applications. Our solution provides great

new opportunities to understand and predict human behaviors

in natural videos.

The organization of the paper is as follows: In Section II,

we review some related works of 2D/3D human pose estima-

tion based on monocular cameras. The preprocessing including

2D tracking and 3D localization of our proposed scheme is

then introduced in Section III. In Section IV, the hierarchical

3D pose estimation is discussed in details. Experimental results

are presented in Section V, followed by the conclusions

in Section VI.

II. RELATED WORK

A. 2D Human Pose Estimation From Monocular Cameras

As a crucial task to facilitate analyses of human actions

and activities in image and videos, human pose estimation

in 2D based on monocular cameras has been well studied.

Recent efforts on deep learning approaches, mainly CNN

based [1], [6]]–[15], [45], show reliable results for multiple

people. It is relatively easier to label 2D human pose without

the need of experimental settings; therefore, acquiring 2D

training data is less expensive. The performance on the MPII

benchmark [16] has become saturated in the past three years,

reaching more than 90% percentage of correct keypoints

(PCKh) with a successful predicted human joint localization

being within 50% of the head segment length to the ground

truth joint (PCKh@0.5) [12]–[15].

B. 3D Human Pose Estimation From Monocular Cameras

Unlike 2D human pose estimation, 3D human pose estima-

tion from monocular cameras is far from mature. Many early

approaches [17], [43], [44] are based on appearance models

(e.g., silhouettes) and perform tracking using stochastic search

with kinematic constraints. However, silhouette extraction can

be unreliable due to complex backgrounds, occlusions, and

moving cameras. When deep learning prospers, researchers

first turn to 3D training data to solve the problem. 3D training

data are obtained by the MoCap system in constrained envi-

ronments. Later, to tackle the more challenging task of 3D

pose estimation in the wild, some researchers find 3D training

data not enough, and use 2D training data in addition. Related

methods can be roughly grouped into 3 categories. The first

two categories are called Direct3D methods as they need 3D

MoCap training data. In contrast, the third category, which

our method falls within, does not necessarily need 3D training

data. The three categories are as follows.
1) Training with 3D Input and Ground Truth: 3D human

pose estimation methods are directly trained and tested

based on multi-view 3D MoCap data and corresponding

ground truth of 3D joints [18], [19]. Li and Chan [18]

pre-train their network with maps for 2D joint classifica-

tion, and use a multi-task framework to jointly train pose

regression and body part detectors. In [19] the authors

propose a framework that can be interpreted as a special

form of structured support vector machines where the

joint feature space is discriminatively learned. This

category of methods depends heavily on 3D training

data, which is lacking in the current literature.

2) Joint estimation from multiple sources: jointly solves

2D and 3D pose estimation from image sequen-

ces [25], [26], [28]–[30], [42]. Methods in this category

try to compensate the lack of 3D training data by incor-

porating 2D training data. Still, a significant amount

of training data is required. The position of human

subject(s) in the image sequences affects the training.

3) The 3D Pose Inference from Estimated 2D Pose: the

problem is tackled with two steps: first, detect the 2D

joints by a 2D pose detector [20], [21]; second, estimate

3D poses from 2D poses. In other words, methods in
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this category use the 2D results as an intermediate step.

More specifically, Ramakrishna et al. [22] represent a

3D pose by a linear combination of a set of base poses,

which are learned from motion databases, by minimizing

the reprojection error directly in the high dimensional

pose space. To overcome this high dimensional search

problem, Wang et al. [23] further extend the work

in [22] by enforcing the length proportions of eight

limbs with respect to the body length to be constant.

In recent work [24], Wang et al. represent 3D poses by

a sparse combination of bases which encode structural

pose priors to reduce the lifting ambiguity. Their system

outputs K candidate 3D poses and improve 3D pose

estimates by post-processing as well as exploiting tem-

poral cues. In [27], Zhou et al. solve the correspondence

between video and 3D motion capture data. Along the

same line of research, we estimate 3D pose from 2D

intermediate results in a hierarchical fashion, where we

apply a prior human model that allows proportions of

bone lengths to be adaptively determined.

While 3D human pose estimation of a single person based

on monocular moving camera has been reported, there are

less papers that have analyzed 3D multi-human pose esti-

mation performance in natural videos, especially recordings

from moving cameras such as car-mounted cameras, which

are of high interest to autonomous driving, etc. A few

papers [30] show results for in-the-wild data such as MPII

and MPII-INF-HP, but they do not have 3D quantitative

results on multi-person videos. This paper, on the other hand,

qualitatively and quantitatively addresses 3D multi-person

human pose estimation in a variety of natural videos from

fixed or moving cameras, including transportation scenarios,

daily activities, sports, etc. We will compare our method with

several state-of-the-art 2D-to-3D methods. Our aim is not to

show increased accuracy on well-trained datasets recorded in

experimental settings, which can be better handled by deep

learning approaches, as we believe there are certain limitations

in this branch of work. Instead, we show superior performance

on natural multi-person videos recorded by fixed or moving

cameras.

III. 2D POSE TRACKING AND 3D LOCALIZATION

BY MOVING CAMERAS

A. Notations

First, as summarized in Table I, we define some notations

of our pose estimation system, where (·)t represents the

corresponding variable at the time t .

B. 2D Pose Estimation and Tracking

We take advantage of the recent advances in 2D human pose

estimation using a deep neural network (DNN) based human

pose detector, OpenPose [1], which independently detects 2D

joints for every image frame of the video. Since the 2D pose

estimation is not the main focus of this paper, we just take the

2D pose estimated by OpenPose as the input initial value of

our system.

TABLE I

NOTATIONS OF THE SYSTEM

OpenPose only focuses on single images. However, there

are several drawbacks of single frame-based pose estimation,

which are listed as follows.

a) The occlusion cannot be easily handled. When some

joints are occluded, the single frame-based pose estimation

becomes unreliable. If multiple people are close to each other,

joints from different people can be easily tangled together.

The pose even cannot be estimated when full occlusion

happens.

b) Temporal information is not well exploited for fur-

ther analysis. Since there is no association across frames,

it becomes unclear which person/joint corresponds to which

person/joint across frames. Without association in the time

domain, it is hard to perform further analysis, such as behavior

analysis, anomaly detection and speed estimation.

To address the above drawbacks, we apply a multiple-object

tracking method to solve occlusion and association problem.

We adopt TrackletNet Tracking (TNT) [31] for human tracking

under fixed or moving cameras since it shows great per-

formance when handling occlusions. Based on the detection

results from OpenPose, the tracklets are generated based

on intersection-over-union (IOU) and appearance similarity

between two adjacent frames. Then the tracklet based graph

model is built with each tracklet being treated as a node in

the graph. For every edge between two nodes, the connectivity

is defined by a pre-trained multi-scale TrackletNet, which

measures the similarity between two tracklets. Then clustering

is conducted to minimize the total cost on the graph, so that

the tracklets from the same ID can be merged into one group.

The details of TNT can be found in [31]. Simply put, the goal

of tracking is to obtain the unique ID for each detected person

from OpenPose, i.e.,

I Di,t = T
(

Di,t

)

, (1)

where Di,t is the i -th detection at frame t and T (·) is the

tracker function. The output of the tracking is the unique

person ID of the detection Di,t . Since the detection results

from OpenPose sometimes are very noisy, Kalman filter is

applied for smoothing for each individual joint.
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C. 3D Pose Localization by Visual Odometry

and Ground Plane Estimation

We use state-of-the-art semi-direct visual odometry

(SVO) [19] technique to calculate the camera trajectory, so as

to infer the 3D location of the human to be pose estimated.

From SVO we can localize the camera position and pose,

as well as the ground plane. Subsequently, the foot location

for each human in the world coordinates can be estimated.

For every 3D human-foot point P of the OpenPose detected

person, who stands on the ground plane, the following two

constraints should be followed,

K
(

R(C) P + t(C)
)

= s p, (2)

n(G) P + h(G) = 0, (3)

where the camera pose
[

R(C)|t(C)
]

can be estimated by

SVO [32], while the ground plane
(

n(G), h(G)
)

can be esti-

mated by [33]. Note that, p is the 2D projection of the 3D

point P on the image plane with scale factor s, as indicated in

Eq. (2), and Eq. (3) specifies the ground plane constraint. The

3D point P can thus be localized as a function of R(C), t(C),

n(G), and h(G)(as defined in Table I), derived from Eq. (2) and

Eq. (3), i.e.,

P
(

R(C), t(C), n(G), h(G)
)

=

(

K R(C)
)−1

(

n(G)T
(

K R(C)
)−1

K t(C)−h(G)

n(G)T
(

K R(C)
)−1

p
p − K t(C)

)

,

(4)

Then the absolute height, H , of the estimated human can be

obtained by,

H =
‖Pbl − Pbr‖ h

w
, (5)

where Pbl and Pbr are the two bottom 3D points correspond-

ing to the two bottom points of the detection bounding box

on the ground plane, and w and h are the width and height of

the 2D detection bounding box.

IV. PROPOSED 3D POSE ESTIMATION

A. Flexible Hierarchical 3D Human Body Model

To estimate reasonable 3D poses for human, we adopt a

flexible hierarchical 3D human body model. The torso is at

the top level in the human body model hierarchy. The upper

limbs are at the second level, which depends on the top-level

pose of the torso. The lower limbs are at the third level, which

depends on the second-level upper limbs, and thus on the

top-level pose of the torso. The human body model is defined

as M (X, L, θ), parameterized by joints X , bone lengths L,

and angles θ . In our definition of the human model, all the

joints are flexible, which can be decomposed to different poses.

However, the joints are also constrained by the bone length L

and joint angle θ . In particular, there are 13 joints used in

our human models. In the human model coordinate system,

the origin is defined as the center of the torso plane, which

also determines the 3D locations of shoulder and hip joints.

An example of the flexible human model is shown in Fig. 2.

Fig. 2. Flexible hierarchical 3D human body model coordinates.

TABLE II

ANGLE CONSTRAINTS OF THE HUMAN MODEL AS DEFINED IN [38]

Then a connectivity matrix is defined as follows to measure

whether two joints X i , X j are connected in the skeleton,

C (i, j) =

{

1 X i , X j connected,

0 O.W.
(6)

Similarly, the matrix of bone length between each pair of joints

is defined as,

L (i, j) = Hli, j , (7)

where li, j is the initialized normalized bone length between

connected joints X i , X j . Note that bone lengths L (i, j) are

proportional to the body height. We use this set of bone lengths

li, j to initialize, and then include bone lengths as parameters

for optimization. This way, we can obtain a fine-tuned final

estimation.

Angle constraints are summarized in Table II and Fig. 3.

Denote the 3D coordinate system of torso pose as nx , ny , nz ,

as shown in Fig. 2, and θ as the set of angle constraints.

For any ui, j ∈ θ , u is a 6D tuple, denoted as ui, j =
(

i, j, ni, j,1, ni, j,2, θ
−
i, j , θ

+
i, j

)

, where i, j are the pair of joints

from one of the seven categories as shown in TABLE II, ni, j,1

and ni, j,2 are two axes of angle rotation plane picked from

nx , ny , nz , which are shown in each sub-plot of Fig. 3,

and θ−
i, j , θ

+
i, j are the lower and upper bounds of the angle

constraints. Denote ui, j =
(

xi, j,1, xi, j,2

)

as the 2D coordinate

of the angle rotation plane, i.e.,

xi, j,1 =
nT

i, j,1

(

X i − X j

)

∥

∥X i − X j

∥

∥

, (8)

xi, j,2 =
nT

i, j,2

(

X i − X j

)

∥

∥X i − X j

∥

∥

. (9)
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Fig. 3. Limb angle limits [38]. (a) Shoulder angle limits, top view.
(b) Shoulder angle limits, front view. (c) Shoulder angle limits, side view.
(d) Elbow angle limits. (e) Hip angle limits, side view. (f) Hip angle limits,
front view. (g) Knee angle limits, side view.

Then the angle constraint can be represented as

θ−
i, j ≤ Angle

(

xi, j,1, xi, j,2

)

≤ θ+
i, j , (10)

where Angle (x, y) is the function of x, y that outputs the

angle of the point (x, y) on the 2D space.

B. Hierarchical 3D Human Pose Estimation

Our proposed pose estimation is processed in a hierarchical

way, i.e., the torso pose is estimated first, followed by the

upper and lower limb pose estimation. Several advantages of

this hierarchical approach are discussed below.

• Robustness in multi-person localization and pose

estimation. As we know, the four torso joints are least

flexible than the joints on the limbs, which can be

treated as a rigid object, and they usually form a 3D

regular plane. Based on the Perspective-N-Point (PNP)

algorithm [34], the torso poses can be estimated and

localized related to the camera easily and robustly. On the

other hand, if we also take into account the joints on the

limbs at this point, then the 3D torso pose cannot be

easily and accurately inferred.

• Simplify the estimation. Since the limb pose is largely

dependent on the torso pose, after we estimate the torso

pose, the limb pose can be easily inferred. Moreover,

the dissection of the problem greatly reduces the search

space with increased efficiency. Methods that try to solve

the full set of poses, i.e., 13 joints, suffer from compu-

tation complexity. On the contrary, we structure poses

hierarchically and formulate torso and limb estimations

respectively with a lower degree of freedoms (DoFs),

enabling real-time processing capability. This hierarchical

way can largely simplify the constraints and make the

optimization efficiently.

1) Torso Pose Estimation: For each person, the camera pose

can be inferred by solving a PNP problem with four pairs

of 3D torso joints in the human model and 2D joints on the

image plane. For each 3D and 2D pair i of the k-th person,

they should follow the projection constraint as follows,

sxk,i = K
(

R
(H)
k X

(H)
k,i + t

(H)
k

)

, (11)

where X
(H)
k,i represents the location of the i -th torso joint of

the k-th person in the human model coordinates. Particularly,

we use Xk,i∈{1,2,3,4} to denote the torso points, as shown

in Fig. 2. For simplification, we denote LS , LT and L H as

the length of shoulder, torso, and hips, respectively as shown

in Fig. 2. Then, the four torso points can be represented as

Xk,1 =

(

LS

2
,−

LT

2,
, 0

)

, Xk,2 =

(

−
LS

2
,−

LT

2
, 0

)

,

Xk,3 =

(

−
L H

2
,

LT

2
, 0

)

, Xk,4 =

(

L H

2
,

LT

2
, 0

)

. (12)

Given 4 pairs of joints {X
(C)
k,i }, the torso pose

[

R
(H)
k |t

(H)
k

]

of the k-th person in the camera coordinates can be repre-

sented by

X
(C)
k,i = R

(H)
k X

(H)
k,i + t

(H)
k . (13)

We can also transform the world coordinates to the camera

coordinate with the estimated camera pose by

X
(C)
k,i = R(C)X

(W )
k,i + t(C), (14)

Then, we can get the torso joint {X
(W )
k,i } in the world coordi-

nates as

X
(W )
k,i =

(

R(C)
)−1

X
(C)
k,i −

(

R(C)
)−1

t(C)

=

(

R(C)
)−1 (

R
(H)
k X

(H)
k,i + t

(H)
k

)

−

(

R(C)
)−1

t(C).

(15)

2) Limb Pose Estimation: The limb pose estimation is built

upon the estimated torso pose, which is one important feature

of our hierarchical pose estimation. The limb pose is estimated

based on the reprojection error, as well as the constraints of

bone length L (i, j) and joint angle θ , which are defined in
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the previous section. Then the cost function of the joints on

any limb is defined as follows,

f
(

X
(C)
k,i

)

=
∑

i

ck,i

∥

∥

∥
K X

(C)
k,i − sk,i xk,i

∥

∥

∥

+ ρ1

∑

ui, j ∈θ

d
(

Angle
(

xi, j,1, xi, j,2

)

, R
(

θi, j

))

+ ρ2

∑

i, j

C (i, j) d
(∥

∥

∥
X

(C)
k,i −X

(C)
k, j

∥

∥

∥
, R (L (i, j))

)

, (16)

where ck,i is the confidence score of the i -th joint from

OpenPose, X
(C)
k,i is the i -th joint on the limb of the k-th person,

and ui, j is a 6D tuple element from θ defined in the human

model. For arms (upper limbs), either elbow or wrist; for legs

(lower limbs), eitherknee or foot. xk,i is the corresponding

2D joint on the image plane, sk,i is the scale, R
(

θi, j

)

=
[

θ−
i, j , θ

+
i, j

]

is the range of the joint angle, R (L (i, j)) =

[L (i, j) − δl , L (i, j) + δl] is the range of the bone length,

where δl is a small value which we set to 0.1L (i, j) in

our experiments. The distance function d (x, R) measures the

exponential cost between x and R, i.e.,

d (x, R) = exp

(

min
r∈R

(

|x − r |

max (R) − min (R)

))

− 1. (17)

If x lies in the range R, then the output of the function is 0;

otherwise, the output is the minimum exponential absolute

distance to the range R.

The cost function in Eq. (16) can be efficiently solved by

the Powell’s method [35]. After the optimization, the joint

location in the world coordinates can be obtained by Eq. (15).

Thanks to the use of our hierarchical human model, we are

able to dissect the calculation and allow parallel processing

efficiently for the single frame pose initialization. Below is the

flowchart of our limb parallel processing design for a single

subject. For multiple persons, each person can be processed

in parallel as well, which is shown in Fig. 4.

3) Occlusion Reasoning: We utilize keypoint confidence

and geometry reasoning to handle occlusion. For the joint in

the camera coordinates, if it is occluded, then the reprojection

constraint needs to be relaxed since the point is hard to be

seen from the camera view. In other words, we are interested

in the probability that a joint is both detected and visible (not

occluded), which can be formulated as

P (V , D) = P (V |D) P (D) , (18)

where P (D) is the detection probability, i.e., the joint confi-

dence ck,i computed by OpenPose, P (V |D) is the probability

of the visibility of the detected joint, and P (V , D) is the

probability that a joint is both detected and visible.

To approximate P (V |D), a sigmoid function is

adopted, i.e.,

P (V |D) =
1

1 + exp(Z − Zc)
, (19)

where Z is the depth of the target joint, and Zc is the depth of

the center of the torso. If Z is larger than Zc, then the joint is

Fig. 4. Flowchart of parallel processing.

more likely to be occluded by the torso; otherwise, it is more

likely to be visible. This situation is very common, especially

when the camera is on the side view of the human body. Rather

than using ck,i as the weight of reprojection error directly, we

use P (V , D) as the weight. Then Eq. (16) is reformulated as

f
(

X
(C)
k,i

)

=
∑

i

P (V , D)

∥

∥

∥
K X

(C)
k,i − sk,i xk,i

∥

∥

∥

+ ρ1

∑

ui, j ∈θ

d
(

Angle
(

xi, j,1, xi, j,2

)

, R
(

θi, j

))

+ ρ2

∑

(i, j )

C (i, j) d
(
∥

∥

∥
X

(C)
k,i − X

(C)
k, j

∥

∥

∥
, R (L (i, j))

)

. (20)

C. Joint Optimization With Temporal Constraints

to Deal With Missing Poses

After we initialize the torso pose and limb pose in a

hierarchical way for each frame, we also want to take into con-

sideration of temporal constraints to handle missing poses and

occlusions with smoothness constraints. The smoothness term

λ3

∑T
t

∑N
i

∥

∥

∥
X

(W )
i,t − X

(W )
i,t−1

∥

∥

∥

2
in (21) penalizes the objective

function if the 3D coordinates X
(W )
i,t of a joint i are too far

away from each other between two adjacent frames t − 1

and t . Rather than estimating the joint location in the camera

coordinates, we fine-tune the 3D joint location in the world

coordinates directly since the joint locations are usually very

smoothing in the world coordinates and independent to the

camera pose. The cost function with temporal constraints
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TABLE III

SUMMARY OF DIFFERENT DATASETS

involved is defined as follows,

f
(

X
(W )
i,t

)

=

T
∑

t

N
∑

i

P (V , D)

∥

∥

∥
K

(

R
(C)
t X

(W )
i,t + t

(C)
t

)

− si,t xi,t

∥

∥

∥

+ λ1

T
∑

t

∑
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d
(

Angle
(

xi, j,1, xi, j,2

)

, R
(

θi, j

))

+ λ2

T
∑

t

∑

(i, j )

C (i, j)d
(
∥

∥

∥
X

(W )
i − X

(W )
j

∥

∥

∥
, R (L (i, j))

)

+ λ3

T
∑

t

N
∑

i

∥

∥

∥
X

(W )
i,t − X

(W )
i,t−1

∥

∥

∥

2
, (21)

Since we estimate the pose of each person individually,

the person index k is dropped for simplification. In addition to

the cost defined by Eq. (20), a temporal smoothness constraint

is added in the last term of Eq. (21).

V. EXPERIMENTS AND ANALYSIS

We test our method on several videos, such as KITTI

dataset [2], ETH [3] and videos in DALY dataset [4] for

qualitative evaluations. We also test videos in UWHHI and

Human3.6M [5], which have corresponding 3D joint ground

truth, for quantitative evaluations. A summary of all the

datasets we tested on are listed in Table III. Moreover, ablation

study is conducted on different parameter settings. All of

our programs are run on Windows 10, using an Intel Core

i5-6300HQ CPU@2.30Ghz, 2301MHz, 4 Core Processor.

Some qualitative 3D pose estimation results can be found in

the following link: https://youtu.be/YgQ0pF57mSU.

A. Qualitative Evaluation

1) KITTI Dataset: KITTI datasets are captured by driving

around the mid-size city of Karlsruhe, in rural areas and on

highways. It is a highly popular dataset for autonomous driving

research [2]. We choose some sequences from this dataset to

show our capability to estimate pedestrians’ 3D poses using

car-mounted monocular camera. Figure 5 shows a snapshot of

3D pose estimation of pedestrians and cyclers based on our

proposed scheme.

Fig. 5. 3D human pose estimation for multiple people on the street -
kitti_2011_09_29. (a) Street video and human model reprojection. (b) Esti-
mated 3D poses, front view. (c) Estimated 3D poses, top view.

Fig. 6. (a) 3D human pose estimation for multiple people on the street –
ETH dataset CROSSING sequence. (b) 3D human pose estimation for multiple
people on the street – ETH dataset LINTHESCHER sequence.

2) ETH Dataset: ETH dataset is a dataset designed for chal-

lenging tasks of multi-person tracking. ETH dataset features

transportation scenarios that contain dense pedestrians [3].

Data are recorded using a pair of AVT Marlins F033C mounted

on a chariot, with a resolution of 640 × 480, and a frame rate

of 13-14 FPS. We use only the left camera sequence. Our

experiments show that we can also effectively perform multi-

person 3D pose estimation.

3) DALY Dataset: DALY dataset is a dataset consists

of daily activities. We find result of our method looks

more natural and smoother compared to [24]. Furthermore,

thanks to the powerful 2D pose deep learning OpenPose

predictions, the method can handle occlusion to a certain

extent. Figure 7 shows screenshots of results for this video.

Figure 7(b) and 7(c) show examples of successful 3D estima-

tion with occluded hand and/or elbow.
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Fig. 7. Screenshots of DALY dataset “mop ground”.

Fig. 8. Multi-person 3D human pose estimation for basketball scenario.

4) Basketball Scenario: We recorded some real-world bas-

ketball scenario videos, and test our method on these videos.

Even under severe occlusion and fast motion, our method can

reconstruct the 3D poses for multiple people in such scenario.

B. Quantitative Evaluation

1) UWHHI: We also record multi-person moving camera

data with ground truth, using Kinect One, as such dataset is

lacking in the literature. Horizontal resolution of Kinect One

is 0.75 mm per pixel at 0.5 m distance and 3 mm per pixel at

2 m distance. Depth resolution is about 1.5 mm at 0.5 m, and

3 mm at 3 m. We refer to it as University of Washington

Human Human Interaction (UWHHI) data. To the best of

our knowledge, none of the state-of-the art methods report

quantitative evaluation on multi-person using a monocular

moving camera. Figure 9 and Figure 10 show comparisons

to state-of-the-art deep learning method hg3d [30]. As shown

Fig. 9. Example of our method vs. hg3d on UWHHI “basketball”. (a) 2D
estimates of hg3d. (b) 2D reprojection of our method. (c) 3D estimates of
hg3d. (d) 3D estimates of our method.

TABLE IV

DIFFERENCES COMPARED TO COMPETING METHOD

TABLE V

UWHHI. AVERAGE 3D JOINT ERRORS IN mm

in Table III, our method outperforms hg3d for multi-person

human pose estimation using a moving camera in natural

scenarios.

The advantages of our method over competing method hg3d

is listed in Table V. hg3d processes single frame, and only

handles single person so it needs the person to be roughly at

the center of the image. Therefore, in a natural video, when the

person is not at the center of the image, cropping is required.

And as shown in Figure 9 and Figure 10, even after cropping,

hg3d can give unreasonable poses. Please see Figure 9 (c)

in 3D corresponding to Figure 9 (a) in 2D, and Figure 10 (c)

in 3D corresponding to Figure 10 (a) in 2D. On the other

hand, our method always give reasonable pose thanks to our

constraints.

2) UCLA HHOI: We also test our 3D pose estimation

performance on UCLA Human Human Interaction (HHOI)
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Fig. 10. Example of our method vs. hg3d on UWHHI “shake hands”.
(a) 2D estimates of hg3d. (b) 2D reprojection of our method. (c) 3D estimates
of hg3d. (d) 3D estimates of our method.

TABLE VI

UCLA HHOI. AVERAGE 3D JOINT ERRORS IN mm. ∗ INDICATES

RESULTS WHICH ARE OBTAINED FROM THE ORIGINAL PAPER

dataset [41]. Table VI shows comparison with SMPLify [20]

and Xiao’s methods [40]. Here, s stands for skeleton-LSTM

and p stands for patch-LSTM. Our method outperforms the

others on this dataset by a large margin.

Note that our method is not directly compared with the deep

learning results of this dataset reported in [41], because [41]

uses the same dataset for training, while our method doesn’t.

None of the methods listed in Table VI uses training data in

UCLA HHOI dataset.

3) Human3.6M: Our pose estimation algorithm is targeted

at the challenging moving camera scenarios in uncontrolled

environments. However, to the best of our knowledge, there is

no public dataset of such kind with 3D ground truth available.

Therefore, we validate our method on Human3.6M, which is

recorded by static cameras. The Human3.6M dataset contains

3.6M human poses from actors. The videos are captured in a

controlled environment from multiple calibrated static cameras

and accurate 3D poses are measured using a MoCap system.

We validated our results on Human3.6M using the protocol

as [20], where frames from subjects S9 and S11 are used for

testing. Table VII shows that our method outperforms state-

of-the-art (2018) method [24] on almost all of the actions

listed, where the best performance is shown in black bold

font, while the second best is shown in blue bold font. Our

Fig. 11. UCLA HHOI dataset results.

method achieves quite rivaling performance as SMPLify [20],

despite that SMPLify trains a regressor from the SMPL body

shape to the 3D joint representation used in the dataset, while
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TABLE VII

QUANTITATIVE RESULTS ON HUMAN3.6M. ERRORS ARE IN mm

TABLE VIII

ABLATION STUDY. HUMAN3.6M. ERROR IN mm

TABLE IX

IMPACT OF VARYING PARAMETERS ON HUMAN3.6M. ERRORS IN mm

we do not use any training data. Moreover, SMPLify does

not consider multiple people and will not be able to handle

occlusion caused by multiple people. SMPLify only considers

single frame instead of video sequences. Besides that, due to

the heavy fitting process of SMPLify, optimization for a single

image takes about 1 minute on a common desktop CPU, while

our method is significantly faster, i.e., our proposed method

can run at 30 fps on an i5 laptop. More importantly, the perfor-

mance on UCLA HHOI dataset suggests that SMPLify does

not generalize well on natural videos.

Overall, our method performs best among the 2D to 3D

methods on ‘walk together’, ‘Posing’, ‘Waiting’, ’Greeting’

and ‘Posing’. Our method shows lower accuracy than [24] on

‘walking’ action possibly because [24] model poses as a set of

bases which is periodic. On contrary, we decide not to include

any constraints of periodicity, and our method would be more

generalized on data that is non-periodic.

C. Ablation Study

1) Hierarchical vs. Non-Hierarchical: We also investigate

the impact of the hierarchical design of our method. As

a control group, we disable the hierarchical estimation and

optimize for 13 joints all at once. We experimented on subset

of Human3.6M dataset. The results are shown in Table IX.

Fig. 12. Examples of 3D human pose estimation on Human3.6M. Red
skeletons are ground truth from MoCap. Blue skeletons are estimated poses.

We also experimented on HHOI dataset. The results are

shown in Table XI. Our hierarchical method outperforms

the non-hierarchical version. Moreover, it drastically increases

computation efficiency. This advantage makes our hierarchical

method promising for real-time applications.
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TABLE X

ABLATION STUDY. UCLA HHOI DATASET. ERRORS IN mm

TABLE XI

ABLATION STUDY. UCLA HHOI DATASET. ERRORS IN mm

2) Varying the Parameters: We investigate the impact of

varying the parameters in Eq. (21). We disable the second

term, the third term and the fourth term λ1, λ2 and λ3, which

correspond to angle constraint (AC), bone length constraint

(BLC) and temporal constraint (TC) respectively. The results

on Human3.6M are summarized in Table VIII, and the results

on HHOI are summarized in Table X.

3) Occlusion Handling: We also show in Table IX

(Human3.6M) and Table XI (HHOI) the results of w and

w/o the occlusion handling strategy in Section IV.B 3). The

occlusion handling strategy effectively increased accuracy by

a large margin.

VI. CONCLUSION

This paper introduces a hierarchical 3D human pose esti-

mation method using a monocular camera on the street and

in the wild. It utilizes the recent deep learning advances

in 2D body joints predictions as an intermediate step, associate

individuals across frames to exploit each individual’s temporal

information. With a human body prior, we formulate the 3D

human pose estimation problem hierarchically and efficiently

solve the problem in a hierarchical fashion. We first formulate

the torso estimation as a PNP problem and provide a highly

efficient solution. Then we dissect pose estimation for each

limb, formulate and solve an optimization problem such that

each limb rests in a low dimensional pose space and does not

interfere with each other. Experiments show that our method

qualitatively achieves natural 3D pose reconstruction results in

real world videos. We also quantitatively validate our results

on several action poses in a well-received dataset recorded in

a constrained environment, and show it outperforms several

state-of-the-art methods. Experimental results show that even

though existing methods report good performance on dataset

like Human3.6M, their performance may degrade on natural

videos, which have much more viewpoint change, pose vari-

ations, not to mention occlusions. This suggests that existing

deep learning based methods over-fit to training data and

bear poor generalization capabilities. Our efficient solution

to address the challenge provides great new opportunities to

understand and predict human behaviors in natural videos.
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