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ABSTRACT 

 

The goal of data analytics in surveillance videos is to fully 
understand and reconstruct the 3D scene, i.e., to recover the 
trajectory and action of each object. In a surveillance system 
with camera arrays of overlapping views, we propose a novel 
video scene reconstruction framework to collaboratively 
track multiple human objects and estimate their 3D poses. 
First, tracklets are extracted from each single view following 
the tracking-by-detection paradigm. We propose an effective 
integration of visual and semantic object attributes, i.e., 
appearance models, geometry information and poses/actions, 
to associate tracklets across different views. Based on the 
optimum viewing perspectives derived from tracking, a 
hierarchical estimation of human poses is introduced to 
generate the 3D skeleton of each object. The estimated body 
joint points are fed back to the tracking stage to enhance 
tracklet association. Experiments on benchmarks of multi-
view tracking and 3D pose estimation validate the 
effectiveness of the proposed method. 
 

Index Terms— 3D scene reconstruction, multi-view 
tracking, 3D pose estimation, multiple object tracking, data 
association 

 

1. INTRODUCTION 

 
The growing demand of user experience with video streaming 
has brought about a rapid growth in big visual data analytics. 
The ultimate purpose of major applications in this research 
field is to fully understand and reconstruct the video scene in 
a 3D space. This not only involves accurate identification of 
multiple objects and the recovery of their trajectories, but also 
requires precise estimation of their postures.  

Recently, cross-view tracking of multiple people in a 
surveillance camera array has attracted lots of attentions in 
the literature [1]. Researchers exploit multiple cues in both 
2D and 3D, e.g., ground plane occupancy [2]-[4], motion 
coherence, appearance affinity [5], temporal consistency [6], 
postures and actions [7], etc., to locate multiple targets in a 
3D scene map. Nonetheless, there remain many challenges 
that have not been fully resolved. First, in crowded scenes 
where people frequently occlude and intersect with one 

another, the number of identity switches can increase rapidly. 
Moreover, the same object may experience large appearance 
variation across different viewpoints. Last but not least, the 
common inaccuracy of ground plane estimation causes 
mistakes in geo-localization, especially for objects that are far 
away in a video scene.  

On the other hand, the estimation of human poses is 
another key component to multi-view scene reconstruction. 
Multi-view 3D pose estimation provides informative and 
view-invariant features for many useful applications such as 
action recognition. However, full recovery of 3D human 
poses for multiple objects also remains unsolved in dynamic 
and cluttered environments. The major challenge is the 
under-constrained nature of the problem due to loss of depth 
information and frequent (self-)occlusion.  

In this paper, we propose to jointly collaborate multi-
view multi-object tracking and 3D human pose estimation for 
scene reconstruction. For initialization, we follow the 
tracking-by-detection paradigm to generate tracklets, which 
are a series of human bounding boxes grouped by spatio-
temporal coherency and perceptual similarity. Then we 
formulate the data association problem as energy 

(a)                                             (b) 

(c)                                            (d) 
Fig. 1. (a) Multi-view people tracking in 2D. (b) Multi-view pose 
estimation.  (c) top view of 3D trajectories. (d) 3D scene 
reconstruction.  
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minimization based on a set of visual and semantic attributes, 
including a pixel-based adaptive model for two-way 
appearance comparison and a geometry proximity 
measurement based on weighting of depth and visibility. We 
also introduce an explicit action descriptor using feedback 
from the pose estimation stage. The geometry information in 
multi-view tracking is used to choose the optimum viewpoint 
for hierarchical 3D pose estimation, in which the limb pose 
estimation is formulated as minimization of reprojection 
errors at elbows and wrists. The proposed method is 
evaluated on the benchmark of multi-view human tracking in 
comparison with the state-of-the-art. We also run 
experiments on the benchmark of multi-view human pose 
estimation to validate the improvement by feedback from the 
tracking stage.  

The main contribution of this work is two-fold. Firstly, 
novel representations of visual and semantic attributes are 
adopted in multi-view data association, which is formulated 
as an energy minimization problem. Secondly, we propose a 
hierarchical model for pose estimation, in which limb pose 
estimation is solved by minimization of reprojection errors.   

The rest of this paper is organized as follows. We review 
related works in Section 2. The framework of multi-view 3D 
object tracking and hierarchical pose estimation is detailed in 
Section 3. The experimental results are presented in Section 
4 and we conclude the paper in Section 5. 
 

2. RELATED WORKS 

 
This work is closely related to the research streams of multi-
view object tracking and human pose estimation.  

 Multi-view object tracking is often formulated as data 
association across cameras. Berclaz et al. [2] and Fleuret et al. 
[3] follow a tracking-by-segmentation strategy to detect 
candidate targets. They respectively develop their data 
association approaches based on the k-shortest paths 

algorithm and the hidden Markov process. In [5], Xu et al. 
use tracking by detection and exploit multiple cues in their 
hierarchical composition model. Their appearance coherence 
is measured by deep convolution neural network (DCNN) 
features, while the motion information is encoded in a 
continuous function. In [6], Liu uses raw pixel template in 
appearance modeling and combine it with 3D localization, 

spline fitting and temporal consistency in the objective. Both 
appearance models in [5] and [6] cannot adaptively 
“memorize” past feature values. Furthermore, Xu et al. [7] 
first introduce pose/action attributes in cross-view 
association. However, their human poses are trained from 
DCNN features for categorization without pose estimation, 
which may cause errors in transitions of actions.  

3D human pose estimation has been extensively studied 
in the last decade. Early approaches [8], [9] are based on 
appearance models, e.g., silhouettes, and stochastic search 
with kinematic constraints for tracking of joint points. 
However, silhouette extraction becomes unreliable for 
complex background and moving cameras. Amin et al. [10] 
introduce unconstrained 3D pose estimation from multiple 
camera views in a complex environment, but the algorithm is 
only suitable for the upper human body. More recently, Li et 
al. [11] train their single-camera pose estimator using 3D 
motion capture data. Some other monocular methods [12], 
[13] use advanced 2D pose detector as an intermediate step. 
The proposed hierarchical human pose estimator also exploits 
the state-of-the-art 2D pose detector [14] in the recovery of 
3D poses. Different from previous approaches, results from 
multiple cameras are dynamically combined for optimum 
scene reconstruction based on feedback from tracking. 

 

3. METHODOLOGY 

 

Our proposed framework for multi-view scene reconstruction 
consists of two main steps (see Fig. 2). First, we track each 
target by data association across different views using 
multiple cues, including feedback from pose estimation. 
Second, his/her 3D body skeleton is computed in a 
hierarchical formulation using geo-localization information 
from multi-view tracking.  
 

3.1. Multi-view object tracking by data association 

 
In each single view, we first make use of the state-of-the-art 
object detector [15] to obtain the detected bounding boxes at 
each frame. Then we employ a Kalman-filter-based approach 
[16] to associate them into tracklets. Specifically, each 
trajectory is fragmented either when it (1) exits from a frame 
border, (2) is occluded, or (3) has a Kalman prediction of 3D 
location that is 1 meter away from the closest location. All 
the cameras are self-calibrated based on a set of 2D tracklets 
[17] and converted to a global coordinate system according 
to some shared reference point(s).  

Our objective is to recover the trajectories ߒ of all people 
within the 3D scene, that is,  ߒ = ሼߒ௜ : ݅ = 1,2, … , |ܶ|ሽ.         (1) 

Tracklets ߬  are the basic units in multi-view tracking, 
consisting of appearance, geometry and posture information, 
in a time period across multiple cameras.  ߬ = ൛൫ ௝ܽ௖ , ݃௝௖ , ௝௖ݎ , :௝௖൯ݐ ݆ = 1,2, … , |߬|, ܿ = 1,2, … ,  ൟ,   (2)ܥ

where ௝ܽ௖ , ݃௝௖ ௝௖ݎ ,  and ݐ௝௖  respectively denote the appearance 

feature, geometry information, estimated 3D skeleton and the 

Fig. 2. An illustration of the multi-view scene reconstruction.  
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time stamp, ܿ indexes each camera and ܥ is the total number 
of cameras. All the false positives of trajectories are collected 

at ߬଴௖. We aim to solve the following representation: ܩ = ൛ߒ௜ ← ௝߬௖, ∀݅, ∀݆, ∀ܿൟ,              (3) 

which can be formulated as searching for the optimal solution 
by maximizing a posterior  ݌ሺܫ|ܩሻ ∝ expሾ−ܧሺܩ,  ሻሿ,           (4)ܫ

where ܫ denotes the input image sequences and ܧሺܩ,  ሻ is theܫ
total energy function over three semantic attributes 
(appearance, geometry and pose):  ܧሺܩ, ሻܫ = ∑ ൫ܧ௧ୟ୮୮ + ௧୥ୣ୭ܧ௚ߣ + ௧୮୭ୱ൯௧ܧ௥ߣ ,             (5) 

where ߣ௚  and ߣ௥  are regularization parameters. This energy 

minimization problem in (5) can be effectively solved by the 
reversible jump Markov Chain Monte Carlo (MCMC) 
method [18]. The gaps between associated tracklets are 
interpolated linearly.  
 
3.1.1. Appearance attributes 

 

The term ܧ௧ୟ୮୮
 is defined to describe appearance affinity of 

detected bounding boxes. We propose to model the 
appearance of each target based on an adaptive scheme. The 

term ௝ܽ௖ is defined by a combination of ݓ × ℎ pixel models, 

which each “memorizes” a history of ܰ  observed feature 

values at each corresponding pixel location ݌: ௝ܽ௖ = ൛ ௝ܽ,ଵ௖ ሺ݌ሻ, ௝ܽ,ଶ௖ ሺ݌ሻ … , ௝ܽ,ே௖ ሺ݌ሻൟ.                 (6) 

The procedure of model construction and update is 
described in Fig. 3. The object region within each detected 

bounding box is normalized to ݓ × ℎ pixels masked with a 
maximum ellipse. A Gaussian spatial weighting scheme is 

introduced to dynamically control the learning rates ߙሺ݌ሻ.  ߙሺ݌ሻ = exp ൤− 	‖௣ି௣೎‖మమଶሺ௪మା௛మሻ	൨,              (7) 

where ݌௖ is the center of mass of the object region. Therefore, 
we can reduce the influence of background area that is usually 

far from the center. In each frame, if there are less than  ܰ 

feature vectors at a pixel ݌ in ௝ܽ௖, the observed feature vector 

at ݌ is added to ௝ܽ௖  by a probability of ߙሺ݌ሻ. Otherwise, a 

random feature vector ௝ܽ,௡௖ ሺ݌ሻ  is swapped by the observed 

feature vector with a probability of ߙሺ݌ሻ.  

Let ݑ and ݒ denote two different views. To compare a 

detected box ݅௞௩ at the beginning of a tracklet in one view with 

an appearance model constructed in another view ௝ܽ௨ , we 

adopt the color transfer method used in inter-camera tracking 
[19], [20] to compensate for the change of illumination and 
color response across different cameras. The matching score 
of appearance similarity is computed as ݏ௝,௞௨,௩ = ∑ ቂ#ቄቛ݅݇ݒሺ௣ሻି௔ೕ,೙೎ ሺ௣ሻቛమழఢೌ,∀௡ழேቅቃ೛ ே∙௪∙௛ ,              (8) 

where ߳௔  is the maximum feature distance threshold. (8) 
measures the sum of matched samples within the object 
region weighted by the total number of samples. Hence, we 
can define the objective energy for appearance affinity as ܧ௧ୟ୮୮ = ∑ ∑ ଵ௦ೕ,ೖೠ,ೡା௦ೖ,ೕೡ,ೠ௨,௩௜ , ௜ߒ ← ௝߬௨, ߬௞௩,        (9) 

in which we utilize two-way comparison to enhance the 
robustness of the appearance descriptor.  

In experiments, the RGB color values and local binary 

pattern (LBP) values are adopted as features for appearance 
modeling. The absolute color distance threshold and LBP 
distance threshold are both set to 30. The dimension of each 
appearance model is 128x128x16. 
 
3.1.2. Geometry attributes 

 

The term ܧ௧୥ୣ୭
 encourages to minimize the distance of each 

pair of object locations assigned to the same object identity.  

The geometry information of ௝߬௖ covers four aspects.  ݃௝௖ = ൫ ௝݈௖ , ௝݀௖ , ௝௖ݒ , ௝ܾ௖൯,     (10) 

where ௝݈௖ ∈ ℝଶ  is the predicted 3D ground location in the 

global coordinate system, ௝݀௖ is the depth to the camera, ݒ௝௖  is 

the visibility defined as the percentage of visible area when 

an object is occluded by other(s) [21], and ௝ܾ௖ is an indicator 

of whether the bounding box is attached to a frame border. ௝ܾ௖ 

is set to 1 when the shortest distance of an edge to a frame 
border is larger than 10 pixels and 0.01 otherwise. The 
objective energy for geometry can be defined accordingly.  ܧ௧୥ୣ୭ = ∑ ∑ ቈฮ ௝݈௨ − ݈௞௩ฮଶ ∙ ୫୧୬൛௩ೕೠ,௩ೖೡൟ∙௕ೕೠ∙௕ೖೡ୫ୟ୶ቄௗೕೠ,ௗೖೡቅ ቉௨,௩௜ , ௜ߒ ← ௝߬௨, ߬௞௩, (11) 

where ฮ ௝݈௨ − ݈௞௩ฮଶ  indicates the Euclidean distance between ௝݈௨ and ݈௞௩. The 3D distance is divided by the maximum depth 

between two detected objects, because the precision of 3D 
localization decreases as an object moves far away from the 
camera. Moreover, since the estimation of foot points is prone 
to error when a bounding box is occluded or attached to a 
frame border, the objective is multiplied by the minimum 
visibility and the indicators of attachment to frame borders.  
 
3.1.3. Pose attributes 

 

 

 
           (a)       (b)      (c)                (d)                         (e) 
Fig. 3. Adaptive appearance models and their comparison with
detected objects. The two rows give the same object identity in two
different views. (a) RGB images. (b) LBP images. (c) Color-
transferred images. (d) Normalized bounding boxes with ellipse
masks. (e) (Averaged) appearance models (color components only).
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The feedback of 3D human joint points, noted ݎ௝௖, from pose 

estimation is applied to the objective energy as pose/action 
attributes. Different from the previous work [7], our pose 
descriptor is a set of joint points encoding the 3D actions 
explicitly. This can help avoid confusion in pose transitions 
and reduce complexity with temporal information. The pose 
objective is weighted by some geometry aspects similar to 
(11), because the estimation of human skeleton also relies on 

high resolution and high visibility. More specifically, ܧ௧୮୭ୱ
 is 

defined as follows. ܧ௧୮୭ୱ = ∑ ∑ ቈฮݎ௝௨ − ௞௩ฮଶݎ ∙ ୫୧୬൛௩ೕೠ,௩ೖೡൟ∙௕ೕೠ∙௕ೖೡ୫ୟ୶ቄௗೕೠ,ௗೖೡቅ ቉௨,௩௜ , ௜ߒ ← ௝߬௨, ߬௞௩, (12) 

where ฮݎ௝௨ −  ௞௩ฮଶ measures the Euclidean distance betweenݎ

the set of joint points shared in both views.  

 

3.2. Hierarchical 3D pose estimation 

 
The hierarchy of 3D pose estimation is ordered by torso 
estimation, upper limb estimation and lower limb estimation.  

From the geometry information in multi-view tracking, 

we can define the optimum view of each ߒ௜  at time ݐ as ܿ௧∗ = arg	 max∀௖ஸ஼ ௩೟೎∙௕೟೎ௗ೟೎ ,         (13) 

which is chosen for single-view 3D pose estimation.  For each 
camera, the camera intrinsic matrix is assumed to be self-
calibrated in advance [17]. We aim to find the human joint 
points in the person’s coordinates (PC), where the origin is 

located at the center of torso,	X-axis points to the right, Y-
axis points upwards and Z-axis points towards the camera 
(see Fig. 4). Then PC are converted to the world coordinate 
system, in which estimated joint points can be augmented 
onto the 3D trajectories for scene reconstruction.  

We take advantage of the recent advance in 2D human 
pose estimation using a DCNN [14], which gives 2D joints 
prediction at every frame. The 2D predictions are utilized as 
input to our 3D estimation algorithm.  
 
3.2.1. Torso pose estimation 
 

The estimation of each person’s torso pose with respect to the 
camera is formulated as a perspective N point (PNP) problem. 
We employ a human model prior that contains all the bone 
lengths with reasonable ratios between every pair of bones. 
The section of human torso is modeled as a trapezoid with 

upper base of	ܮ௦, height of ܮ௧ and lower base of ܮ௛ (see Fig. 

4). Thus, the four torso joint points in person’s coordinates 

(PC) can be defined as ଵܲ = ቀ௅ೞଶ , ௅೟ଶ , 0ቁ, ଶܲ = ቀ− ௅ೞଶ , ௅೟ଶ , 0ቁ, 

ଷܲ = ቀ௅೓ଶ , − ௅೟ଶ , 0ቁ, ସܲ = ቀ− ௅೓ଶ , − ௅೟ଶ , 0ቁ.           (14) 

The 2D predictions of shoulders and hips from DCNN are 
regarded as the four corner points of the trapezoid, i.e. 2D 

projection of ௜ܲ , ݅ = 1,2,3,4. This P4P problem can be solved 
based on the projection relationship from 3D to 2D.   
 
3.2.2. Limb pose estimation 
 

Once the torso poses are estimated, we can move on to the 
next level in hierarchical 3D human pose estimation. For each 
limb, we aim to find the Euler angles at upper (shoulder/hip) 
and lower (elbow/knee) parts. The problem is formulated as 
minimization of reprojection errors via optimization. Inspired 
by [22], we define the elbow local coordinates (ELC), where 
the origin is at an elbow joint point and the axes are in 
accordance with PC. The length of the lower arm is denoted 

as ܮ௟ and the angles to be estimated are ߠ௟௑ and ߠ௟௒. Thus, the 

wrist coordinates ௪ܲ in ELC can be calculated by ௪ܲ୉୐େ = ௟ܮ	௟௑ሾ0܀௟௒܀ 	0ሿ்,            (15) 

where ܀௟௑  and ܀௟௒  are the rotation matrices with ߠ௟௑  and ߠ௟௒ 
respectively. Likewise, we define the shoulder local 

coordinates (SLC), where the origin locates at a shoulder 

point. We denote upper arm length as ܮ௨ and the angles to be 

estimated as ߠ௨௑, ߠ௨௒ and ߠ௨௓. The elbow coordinates in SLC 
are given by ௘ܲୗ୐େ = ௨௒܀௨௓܀  0ሿ்.              (16)	௨ܮ	௨௑ሾ0܀
The wrist is constrained by the elbow as ௪ܲୗ୐େ = ௨௒܀ ௨௑ሺ܀ ௪ܲ୉୐େ + ሾ0	ܮ௨	0ሿ்ሻ.           (17) 

The shoulder coordinates in PC, namely ଵܲ, ଶܲ  in (14), are 

noted as ௦ܲ୔େ = ሾܺ௦, ௦ܻ, ܼ௦ሿ, which can be used to transform 
the elbow and wrist points to PC. ௘ܲ୔େ = ௘ܲୗ୐େ + ሾܺ௦, ௦ܻ , ܼ௦ሿ், ௪ܲ୔େ = ௪ܲୗ୐େ + ሾܺ௦, ௦ܻ , ܼ௦ሿ்.         (18) 

3D coordinates ௘ܲ୔େ and ௪ܲ୔େ are then projected to 2D image 
using the projection matrices solved in torso estimation, 

noted as ݌௘  and ݌௪ 	respectively , for the computation of 
reprojection errors. We denote the input 2D predictions at 

elbow as ݌௘෦  and at wrist as ݌௪෦ . Therefore, the objective 
function of this optimization problem can be formulated as  ݂൫ߠ௨௑ , ௨௒ߠ , ௨௓ߠ , ௟௑ߠ , ௟௒൯ߠ = ௘݌‖௘ߣ − ‖ଶ	௘෦݌ + ௪݌‖௪ߣ − ௪෦݌ 	‖ଶ, (18) 

where the weights are constrained by ߣ௘ <  ௪, because theߣ
computation of a wrist is affected by the elbow. We make use 
of the Powell’s conjugate direction method [23] to solve this 
optimization problem efficiently. 
 

4. EXPERIMENTAL RESULTS 

 
Our proposed method is evaluated and demonstrated on the 
EPFL benchmark [2] and the Human3.6M benchmark [24].  
 

4.1. Evaluation on EPFL benchmark 

        
Fig. 4. Perspective 4 Points for torso estimation and the
demonstration of limb pose estimation.  
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We adopt the passageway sequence in our experiments, 
which is known for its challenging scenario with poor 
lighting and image quality. People can become very small on 
the far end and some of them are captured in only one or two 
cameras. The sequence consists of 4 different views and films 
11 pedestrians walking or bicycling.  Each view is shot at 25 
fps and in a relatively low resolution 360x288.  

The quantitative comparison of the proposed method 
with several state-of-the-art algorithms in multi-view object 
tracking is presented in Table 1. The widely used CLEAR 
metrics [25] are adopted, including Multiple Object Detection 

Accuracy (MODA), Detection Precision (MODP), Tracking 

Accuracy (MOTA) and Tracking Precision (MOTP). MODA 
and MOTA measure three sources of errors in detection and 
tracking respectively: false positives, false negatives and 
identity switches. MODP and MOTP are used to measure 
misalignment between annotated and predicted locations.  

The proposed algorithm achieves the top performance on 
all metrics in this challenging sequence. Our promising 
performance in tracking is mainly due to the effective 
formulation of multi-view object tracking by integrating 
robust visual and semantic attributes including appearance, 
geometry and human poses. HTC [5] loses to us by margin, 
as they only consider appearance and motion patterns in their 
hierarchical feature model. Moreover, their feature descriptor 
for appearance modeling is only extracted in several frames, 
however, the proposed adaptive appearance model can 
“memorize” a rather long history of past feature values. Both 
the works [2] and [3] rely on a less robust appearance 
representation and suffer from an object localization strategy 
of poor accuracy. The relatively higher MODA and MODP 
gained by our method and HTC [5] confirm that the tracking-
by-detection-based approaches are superior to tracking by 
segmentation in terms of localization of object observations.  
The DCNN framework for object detection [8] chosen by us 
is also more advanced than the previous architecture [26].  

A qualitative demonstration of the proposed framework 
for multi-view scene reconstruction can be seen in Fig. 1. The 
complete video demo is made available at the following link: 
http://allison.ee.washington.edu/thomas/mvsr/.  
 

4.2. Evaluation on Human3.6M benchmark 

 
As there is no ground truth of 3D joint points provided in the 
EPFL benchmark, we conduct more experiments on a 

Human3.6M dataset to evaluate our improvement in 3D pose 
estimation. The walking sequence, which includes 4 high-
resolution views (1000x1002) of video data at 50 fps, is 
chosen for experiments. There is only one object walking 
around the room for about 1 minute.  

We compare the proposed strategy that uses feedback 
from multi-view tracking to choose the optimum camera 
views for pose estimation with the results directly obtained 
from each single view. The quantitative comparison is shown 
in Table 2. The metric for evaluation is the average 3D 
distance between the ground truths and the estimated joint 
points. Some qualitative results and demonstration are 
presented in Fig. 5. The complete video demo is also 
available at http://allison.ee.washington.edu/thomas/mvsr/. 

Our proposed scheme based on optimum-view selection 
from multi-view tracking achieves the minimum error, which 
validates the effectiveness of optimum viewpoint estimation 
by (13). Since the selected camera views contain object 
locations with small depths and not attached to any frame 
border, they help generate the best performance in both pose 
estimation and 3D scene reconstruction. 
 

5. CONCLUSION 

 
This paper presents a multi-view scene reconstruction 
framework jointly combining the efforts of multi-view multi-
object tracking and 3D pose estimation. Multi-view people 
tracking is leveraged with rich visual and semantic attributes, 
including adaptive appearance modeling, spatially-weighted 
geometry measurement, and the feedback of 3D joint points 

Table 2. Quantitative comparison of 3D pose estimation on the 
Human3.6M benchmark (unit: mm) 

Multi-
view 

Camera 
#0 

Camera 
#1 

Camera 
#2 

Camera 
#3 

99.7 132.5 115.1 113.2 137.1 

Table 1. Quantitative comparison of multi-view object tracking on 
the EPFL benchmark 

Method MODA(%) MODP(%) MOTA(%) MOTP(%) 

Ours 61.04 73.13 60.26 72.26 

HTC [5] 43.75 67.11 43.75 67.11 

KSP [2] 40.46 58.88 40.46 57.24 

POM [3] 32.57 62.50 32.57 60.86 

Bold entries indicate the best results in the corresponding columns. 

 

                (a)                             (b)                                 (c) 
Fig. 5. Qualitative comparison of 3D pose estimation on the 
Human3.6M benchmark. (a) 2D poses estimated from each view. 
(b) Failures of 3D pose estimation in single views. (c) Estimated 3D 
poses from the optimum views. 
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from the pose estimation stage. The data association across 
different views is formulated as an energy minimization 
problem that is solved by an MCMC-based approach. 
Furthermore, we introduce a hierarchical model for 3D pose 
estimation, which applies a novel formulation of 
minimization of reprojection errors to the computation of 
limb angles. The estimation of 3D poses is benefited from the 
optimum views selected from multi-view tracking. 
Experiments on two public benchmarks both demonstrate the 
efficacy of the proposed method. In the future, we will extend 
our method to non-human objects and camera arrays without 
overlapping view [27] for broader application. 
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