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ABSTRACT

Multi-object tracking (MOT) is an important topic and critical task

related to both static andmoving camera applications, such as traffic

flow analysis, autonomous driving and robotic vision. However, due

to unreliable detection, occlusion and fast camera motion, tracked

targets can be easily lost, which makes MOT very challenging. Most

recent works exploit spatial and temporal information for MOT, but

how to combine appearance and temporal features is still not well

addressed. In this paper, we propose an innovative and effective

tracking method called TrackletNet Tracker (TNT) that combines

temporal and appearance information together as a unified frame-

work. First, we define a graph model which treats each tracklet as a

vertex. The tracklets are generated by associating detection results

frame by frame with the help of the appearance similarity and the

spatial consistency. To compensate camera movement, epipolar

constraints are taken into consideration in the association. Then,

for every pair of two tracklets, the similarity, called the connectivity

in the paper, is measured by our designed multi-scale TrackletNet.

Afterwards, the tracklets are clustered into groups and each group

represents a unique object ID. Our proposed TNT has the ability

to handle most of the challenges in MOT, and achieves promising

results on MOT16 and MOT17 benchmark datasets compared with

other state-of-the-art methods.
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1 INTRODUCTION

Multi-object tracking (MOT) is an important topic in computer

vision andmachine learning field. This technique is critically needed

in many tasks, such as traffic flow analysis from static cameras,

human behavior prediction and autonomous driving assistance [7,

10, 37, 38, 40]. However, due to the noisy visual object detection and

occlusion in the crowds, tracking multiple objects over long time is

very challenging. To address such problems, many methods follow

the tracking-by-detection framework, i.e., tracking is applied as an

association approach given the detection results. Built upon the

tracking-by-detection framework, multiple cues can be combined

together into the tracking scheme. 1) Designing robust appearance

features of detected object [29, 36, 42, 46] is the most widely used

cue in the tracking. With a well-embedded appearance, features

should be similar if they are from the same object, while they can

be very different if they are from distinct objects. 2) Exploiting

temporal relation for locations among frames in a trajectory [23]

can serve as another important cue. With slow motion and high

frame rate of cameras, we can assume that the trajectories of objects

follow some smoothing functions in the time domain. 3) Interaction

cue among different target objects considers the relationship among

neighboring targets in a crowd or a group [30]. As a result, we

should take into account all these cues in the tracking system.

In this paper, the proposed TrackletNet Tracker (TNT) takes ad-

vantages of the above useful cues together into a unified framework

based on an undirected graph model [24]. Each vertex in our graph

model represents one tracklet and the edge between two vertices

measures the similarity between the two connected tracklets. Here,

the tracklet is defined as a small piece of consecutive detections of

an object by detection association, which will be discussed in detail

in Section 4.1. Due to the unreliable detection and occlusion among

objects, the entire trajectory of an object may be divided into sev-

eral distinct tracklets. Given the graph representation, tracking can

be regarded as a clustering approach that can merge the tracklets

into big clusters.
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Figure 1: Our TNT framework for multi-object tracking.

Given the detections in different frames, association is con-

ducted to generate tracklets as the Vertex Set V . After that,

every pair of two neighboring tracklets are sent into the

TrackletNet to measure the connectivity, which forms the

similarity on the Edge Set E. Finally, the tracklets with the

same ID are grouped into one cluster using the graph parti-

tion approach on the defined graph G(V ,E).

To generate the tracklets, i.e., the vertices of the graph, we as-

sociate detections among consecutive frames based on the spatial

consistency, i.e., the intersection-over-union (IOU) between bound-

ing boxes and the similarity of appearance features. However, the

IOU criterion becomes unreliable when the camera is moving or

revolving because the position of detection may shift a lot on the

2D image plane. In such a situation, epipolar geometry is adopted to

compensate camera movement and predict the position of bounding

boxes in the next frame. To estimate the connectivity on the edge

of the graph between two vertices, multi-scale TrackletNet based

on convolutional neural networks (CNN) is designed for measuring

the similarity and continuity of each pair of two input tracklets.

Specifically, we propose the following contributions:

1) To the best of our knowledge, this is the first work to adopt

epipolar geometry in the tracklet generation to compensate camera

movement.

2) ACNN architecture, calledmulti-scale TrackletNet, is designed

to measure the connectivity between two neighboring tracklets.

This network combines temporal consistency and appearance in-

formation into a unified system.

3) Our model outperforms many state-of-the-art methods in

MOT for both MOT16 and MOT17 benchmarks, and it can be also

easily applied to other different scenarios and tasks.

The outline of the paper is as follows: In Section 2, we review

some related works of state-of-the-art methods in MOT. Section 3

describes the proposed tracklet-based graph modeling. Section 4

presents the multi-scale TrackletNet for measuring the connectivity

between two tracklets. The simulations and discussions are pro-

vided in Section 5, followed by the conclusions and future works in

Section 6.

2 RELATEDWORK

Graph Model based Tracking. Most of the recent multi-object

tracking approaches are based on tracking-by-detection schemes

[6, 45]. Given detection results, tracking is treated as a detection

association task. Many tracking methods are based on graph mod-

els [2, 14, 18, 24, 34ś36, 38, 41] and solve the tracking problem

by minimizing the total cost. Generally, there are two categories

of graph models. One treats the individual detections as the ver-

tices [18, 24, 35, 36], while the other using tracklets as vertices

[2, 34, 38, 41]. For detection-based graph models, there are two ma-

jor disadvantages. First, one of the important assumptions in graph

models is the conditional independence of the vertices. However,

detections are not conditional independent from frame to frame

if we want to track an object in a long run. Hence, the temporal

information is not well utilized. Second, detection-based graph usu-

ally comes with a very high-dimensional affinity matrix, which is

very time consuming to find a good solution in the optimization.

On the contrary, tracklet-based graph models can better utilize the

information from a short trajectory to measure the relationship be-

tween vertices, but the mis-association should be carefully handled

in the tracklet generation step.

Tracking by RNNs. Besides graph models, recurrent neural net-

works (RNNs)-based tracking also plays an important role in recent

years [17, 20, 21, 23, 30]. For example, [23] first time proposes an

end-to-end learning approach which uses RNN to model the tar-

get motion. However, drawbacks are also obvious. It can be easily

affected by the camera motion and does not utilize appearance

information in the association. Similarly, [20] minimizes the regres-

sion and association error in a unified framework by using long

short-term memory (LSTM) blocks. One advantage of RNN-based

tracking is the ability of online prediction. However, along with

the propagation of RNN blocks, the relation between two far-away

detections becomes very weak, especially for high-dimensional

appearance features [17]. As a result, the drift error will be easily

accumulated during the long-time occlusion. The performance of

RNN-based methods degrades in the long run and sometimes can

be easily affected by unreliable detections.

Tracking by Feature Fusion. Features are very important in

the tracking-by-detection framework. There are two types of fea-

tures that are used in common, i.e., appearance features and tem-

poral features. For appearance features, many works adopt CNN-

based features and treat tracking as the re-identification (Re-ID) task

[29, 36, 46, 47]. For example, [29] proposes an adaptive weighted

triplet loss for training and a novel technique for hard-identity

mining. [46] adopts the re-ranking technique [47] in calculating the

feature similarity. Besides CNN-based features, histogram-based

features, like color histograms, histogram of oriented gradients

(HOG), and local binary patterns (LBP), are still powerful if no

labeled training data are available [38]. For temporal features, the

location, size, and motion of bounding boxes are commonly used.

Given the appearance features and temporal features, the tracker

can fuse them together, like [24, 38, 46]. However, it is still empirical

and difficult to determine the weights of different types of features.

End-to-End Tracking. Another category of tracking is based

on end-to-end frameworks [3, 11, 12], where we input raw video
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sequences and output object trajectories. In other words, the detec-

tion and tracking are trained jointly in a single-stage network. One

major advantage of this framework is that the errors will not be

accumulated from detection to tracking. The temporal information

across frames can help improve the detection performance, while

reliable detections can also further improve the tracking perfor-

mance. However, such a framework requires a lot of training data

with a large diversity of different scenarios. Without enough train-

ing data, over-fitting becomes a severe problem. Unlike detection

based training, tracking annotations for video sequences are usually

expensive to be obtained, which becomes the major limitation of

the end-to-end tracking framework.

3 TRACKLET-BASED GRAPH MODEL

Unlike the detection-based graph models, which are computational

expensive and notwell utilizing temporal information, our proposed

TrackletNet Tracker (TNT), as shown in Figure 1, uses tracklets

as the vertices in our graph model with edges measuring the simi-

larities between tracklets. From the tracklets, we can infer objects’

moving trajectories for a longer time, and we can also measure

how the embedded features of the detections change along the time.

Moreover, the number of tracklets is much less than the number

of detections, which makes the optimization more efficient. In the

following section, we will discuss in detail about the designed graph

model and formulate the tracking as an optimization problem.

3.1 Graph Definition G(V ,E)

Vertex Set. A finite set V in which every element u ∈ V rep-

resents a tracklet across multiple frames, i.e., a set of consecutive

detections of the same object along time. For each detection, we

define the bounding box with five parameters, i.e., the center of

the bounding box (xt ,yt ), the width and height (wt ,ht ), and the

frame index t . Besides the bounding box of the detection, we also

extract an appearance feature [31] for each detected object at frame

t . Note that because of unreliable detections, an entire trajectory

of an object may be divided into multiple pieces of tracklets. The

tracklet generation is explained in detail in Section 4.1.

Edge Set. A finite set E in which every element e ∈ E represents

an edge between a pair of two neighboring trackletsu,w ∈ V in the

time domain, i.e., mintu ∈T (u),tw ∈T (w ) |tu − tw | ≤ δt , where T (u) is

the set of frame indices of the tracklet u. For tracklets that are far

away from each other, the edge is not considered between them

since not enough information can be utilized for measuring their

relationship.

Then, a connectivity measure pe is defined to represent the

similarity of the two tracklets connected by the edge e ∈ E. The

edge cost is defined as

ce = log

(
pe

1 − pe

)
, (1)

which represents the cost of cutting the edge. Moreover, the con-

nectivity is defined to be 0 if two tracklets have overlap in the time

domain since they must belong to distinct objects. This is because

an object cannot appear in two tracklets at the same time. The

connectivity is measured by our designed TrackletNet, which will

be introduced in Section 4.2.

3.2 Tracklet Clustering

After the tracklet graph is built, we acquire the object trajectories by

clustering the graph into different sub-graphs. The tracklets in each

sub-graph can represent the same object. Given a tracklet graph

G(V ,E), for every edge e ∈ E, a cost or reward ce is to be payed

based on the predicted clustering labels. Let u andw be arbitrary

neighboring vertices connected by the edge e . Let πe = −1 if u and

w are clustered in the same track and πe = 1 if they are clustered in

distinct tracks. Then the cost will be payed if the similarity pe > 0.5

and πe = 1, or the similarity pe < 0.5 and πe = −1. Therefore,

the clustering cost on the edge e can be defined as πe · ce . As a

result, the objective function can be defined to minimize the total

clustering cost on all graph edges as follows,

min
πe ∈{+1,−1}

∑

e ∈E

πe · ce ,

subject to max(πe , 0) ≤
∑

e ′∈C\{e }

max(πe ′ , 0),

∀C ∈ Cycles(G),∀e ∈ C .

(2)

Here, Cycles(·) returns all cycles in a graph.

Note that the costs ce can be both positive or negative. For track-

lets u,w ∈ V connected by an edge e = {u,w}, the assignment

πe = −1 indicates that u andw belong to the same track. Thus, the

constraint in the objective function can be understood as follows: If,

for any neighboring vertices u andw , there exists a path in G from

u tow along which all edges are labeled -1 (indicating that u andw

belong to the same track), then the edge u,w cannot be labeled 1

(which would indicate the opposite), where the max function in the

equation is to convert the label from -1 to 0. In fact, the constraints

from Equation (2) are generalized transitivity constraints which

guarantee that a feasible solution π well-defines a decomposition

of the graph G into tracks.

Based on the objective function, the graph partition is formulated

as a clustering problem. However, the minimum cost of graph cut

problem defined by Equation (2) is APX-hard [26]. Besides, the

number of clusters is unknown in advance. In this work, we adopt

a graph clustering method proposed by [38] to minimize the cost

with five clustering operations, i.e., assign, merge, split, switch,

and break. The advantage of adopting different types of clustering

operations is to avoid being stuck at a bad local minimum as much

as we can in the optimization.

4 PROPOSED TRACKLETNET TRACKER

4.1 Tracklet Generation with Epipolar
Geometry Constraints

As defined in Section 3, a tracklet contains consecutively detected

objects with bounding box information and embedded appearance

features. To simplify the generation of tracklets, we associate two

consecutive detections based on IOU and appearance similarity

in adjacent frames with a high association threshold to make the

mis-association as small as possible [39, 46].

However, the association accuracy can still be affected by the

fast motion of the camera. For example, as shown in Figure 2(a)(b),

the target detection in the t-th frame has a large IOU with another
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Figure 2: An example of EG-based detection association. (a)

The t-th frame with the target detection (blue). (b) The (t+1)-

th frame with new detections (yellow). The target detection

from the t-th frame (blue dash-box) has a larger IOU with a

different candidate detection in the (t+1)-th frame (right yel-

low box). (c) Some examples of candidate predicted bound-

ing boxes (red dash-boxes) intersected with epipolar lines

(green dash-lines) corresponding to the four virtual corners

of the bounding box of the t-th frame. (d) The predicted

bounding box (red) in the (t+1)-th frame overlappedwith the

correct detection (yellow).

detection in the (t + 1)-th frame. As a result, the detection may

easily get mis-associated.

As we know, the epipolar geometry (EG) [8], i.e., x⊤t Fxt+1 =

0 holds for each pair of static points in two frames, where F is

the fundamental matrix, xt and xt+1 are the matched points in

two frames. Due to the imperfect matching or slow motion of

the matched points, x⊤t Fxt+1 is usually close to zero but does not

exactly equal to zero. Here we propose two assumptions. First, we

assume the target is static or has slow motion, then the four virtual

corner points {xi,t }, i ∈ {1, 2, 3, 4} of the target detection bounding

box in the t-th frame should lie on the corresponding epipolar lines

in the (t + 1)-th frame, i.e., the predicted target bounding box in

the (t + 1)-th frame should intersect with the four epipolar lines as

much as possible as shown in Figure 2(c). Second, we also assume

the size of the bounding box does not have much change in adjacent

frames, then the optimal predicted bounding box can be obtained,

which is shown in red in Figure 2(d).

Followed by the above two assumptions, we can predict the

target bounding box location in the (t + 1)-th frame by formulating

an optimization problem. Define four corner points of the target

bounding box in the t-th frame as {xi,t }, i ∈ {1, 2, 3, 4}, like the

example shown in Figure 2(a). Similarly, we define {xi,t+1}, i ∈

{1, 2, 3, 4}, as the bounding box in the (t + 1)-th frame. Then we

can define the cost function as follows,

f (xi,t+1) =

4∑

i=1

∥x⊤i,tFxi,t+1∥
2
2

+∥(x3,t+1 − x1,t+1) − (x3,t − x1,t )∥
2
2 ,

(3)

where the first term guarantees the predicted bounding box should

intersect with four corresponding epipolar lines as much as possible,

while the second term is the target size constraint in adjacent frames.

One example of predicted bounding box, as shown in Figure 2(d),

is well aligned with the true target in the (t + 1)-th frame. Then,

in the detection association, IOU is calculated between predicted

bounding boxes and detection bounding boxes in the (t + 1)-th

frame.

The optimization of the cost function in Equation (3) can be

reformulated into a Least Square problem and solved efficiently.

Here, we write the fundamental matrix F as column vectors, i.e.,

[f1, f2, f3], then Equation (3) can be reformulated as

f = ∥Ax − b∥22 , (4)

where

A =



x
⊤
1,t f1 x

⊤
1,t f2 0 0

0 x
⊤
2,t f2 x

⊤
2,t f1 0

0 0 x
⊤
3,t f1 x

⊤
3,t f2

x
⊤
4,t f1 0 0 x

⊤
4,t f2

−1 0 1 0

0 −1 0 1



, (5)

x =



x1,t+1(x)

x1,t+1(y)

x3,t+1(x)

x3,t+1(y)



, b =



−x⊤1,t f3

−x⊤2,t f3

−x⊤3,t f3

−x⊤4,t f3

x3,t (x) − x1,t (x)

x3,t (y) − x1,t (y)



. (6)

In our experiments, the fundamental matrix F is efficiently esti-

mated using ORB-SLAM [25].

4.2 Multi-Scale TrackletNet

To measure the connectivity between two tracklets, we aggregate

different types of information, including temporal and appearance

features via the designed multi-scale TrackletNet. The architecture

of the proposed TrackletNet is shown in Figure 3.

For each frame t , a vector consisting of the bounding box param-

eters, i.e., (xt ,yt ,wt ,ht ), concatenated by an embedded appearance

feature extracted from the FaceNet [31], is used to represent an

individual detection from a tracklet. Considering two connected

tracklets with a shared edge in the graph, we concatenate the em-

bedded appearance feature, with dimension dap , of each detection

from these two tracklets inside a time window with a fixed size T .

Then the feature space in the time window of the two tracklets is

(4 + dap ) ×T . For frames with missing detections between the two

target tracklets, we use (4 + dap ) dimensional interpolated vectors

to fill out the blank space. Besides, zero-padding is used for frames

after the second tracklet. To better represent the time occupancy of

input tracklets, two binary masks are used as individual channels

with (4+dap )×T dimension for each input tracklet. For each frame

t , if the detection exists, then we set the t-th column of the corre-

sponding binary mask to be all 1 vector; otherwise we set 0 vector

instead. As a result, the size of the input tensor of the TrackletNet

is B × (4 + dap ) ×T × 3, where B is the batch size and 3 indicates

the number of channels, one for the embedded feature map and the

other two for the binary masks.
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Figure 3: The architecture of the proposed multi-scale TrackletNet.

The TrackletNet contains three convolution layers followed

by max pooling Conv1, Conv2, Conv3, one average pooling layer

AvgPool, and two fully connected layers FC1, FC2. For each convo-

lution layer, inception-like [33] block is used with four different

sizes of kernels, i.e., 1 × 3, 1 × 5, 1 × 9, 1 × 13, which can extract

useful information in different scales. Note that our convolution is

only in the time domain, which can measure the continuity for each

dimension of the feature. Different sizes of kernels will look for

feature changes in different scales. Large kernels have the ability to

measure the continuity of two tracklets even if they are far away

in the time domain, while small kernels can focus on appearance

difference if input tracklets are in small pieces. Each convolution

is followed by one max pooling layer which down-samples by 2

in the time domain. After Conv3, we take the average pooling on

appearance feature dimensions. The average pooling plays a role of

weighted majority vote to measure the discontinuity of all appear-

ance dimensions. Then we concatenate all features and use two

fully connected layers for the final output. The output is defined as

the similarity between the two input tracklets, which ranges from

zero to one.

We use the binary cross entropy loss as the objective function in

the training, which is

L = −
1

N

N∑

i=1

yi logpi + (1 − yi ) log(1 − pi ), (7)

where yi is the ground truth label, which indicates whether the two

input tracklets are from the same object, pi is the output probability,

and N is the number of training samples in a batch.

There are some important properties of the TrackletNet, which

are listed as follows.

1) The TrackletNet focuses on the continuity of the embedded

features along the time. Because of the independence among dif-

ferent feature dimensions, no convolution is conducted across the

dimensions of the embedded features. In other words, the convolu-

tion kernels only capture the dependency along time.

2) Binary masks of the input tensor play a role of the tracklet

indicator, telling the temporal occupancy of the tracklets. They help

the network learn if the discontinuity of two tracklets is caused

by frames without detection or the abrupt changes of the tracklets.

These two types of discontinuity should have different activation

results.

3) The network integrates object Re-ID, temporal and spatial

dependency as one unified framework.

5 EXPERIMENTS

5.1 Dataset

We use MOT16 and MOT17 [22] datasets to train and evaluate our

tracking performance. ForMOT16 dataset, there are 7 training video

sequences and 7 testing video sequences. The benchmark provides

deformable part models (DPM) [4] detections for both training and

testing sequences. With the public detection provided for all the

participants, the tracking performance can be fairly compared in

the evaluation. MOT17 has the same video sequences as MOT16 but

provides more accurate ground truth in the evaluation. In addition

to DPM, Faster-RCNN [27] and scale dependent pooling (SDP) [43]

detection results are also provided. The number of trajectories in

the training data is 546 and the number of total frames is 5, 316.

5.2 Implementation Details

Our proposed multi-scale TrackletNet is purely trained on MOT

dataset. The extracted appearance feature has 512 dimensions, i.e.,

dap = 512. The time window T is set to 64 and the batch size B is

set to 32. We use Adam optimizer with a learning rate of 10−3 at the

beginning. We decrease the learning rate by 10 every 2, 000 steps

until it reaches 10−5. As mentioned above, the MOT dataset is quite

a small dataset for training a complex neural network. However,

the architecture of our proposed TNT is carefully designed to avoid

over-fitting. In addition, augmentation approaches are used for

generating the training samples, i.e., tracklets, as follows.
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Bounding Box Randomization. Instead of using the ground

truth bounding boxes for training, we randomly disturb the size

and location of bounding boxes by a factor α sampled from the

normal distribution N(0, 0.052). Since the detection results could

be very noisy, this randomization will make sure the data from

training and testing are as similar as possible. For each embedded

detection before TrackletNet, the four parameters, i.e., (x ,y,w,h),

are normalized by the size of the frame image to ensure the input

of TrackletNet keeps the same scale in different datasets.

Tracklet Generation. We randomly divide the trajectory of

each object into small pieces of tracklets as follows. For each frame

of a trajectory, we sample a random number from the uniform dis-

tribution, if it is smaller than a threshold, then we set this frame as

a breaking point. Then we split the entire trajectory based on the

breaking points into tracklets.

In the training stage, we randomly generate tracklets with aug-

mentations mentioned above. For each training data, two neighbor-

ing tracklets are randomly selected as the input. If they are from

the same object, the training label is set to be 1; otherwise, 0 is

assigned as the label. To avoid bias, positive and negative pairs are

sampled equally.

5.3 Feature Map Visualization

To better understand the effectiveness of our proposed TrackletNet,

we also plot two examples of feature maps (a) and (b), as shown in

Figure 4. In these two examples, the top figures show the spatial

locations of the two input tracklets in the 64-frame time window.

Blue and green colors represent two tracklets respectively. The

bottom figures show the corresponding feature map along the time

domain after the max pooling of Conv3 with kernel size 5. The

horizontal axis represents the time domain which aligns with the

figures in the top row, while the vertical axis represents different

channels in the feature map. For the example shown in (a), much

higher values of the feature map are on the left side since the

connection between the two tracklets is on the left part of the time

window. As for (b), higher values in the feature map are on the

right side of the time window, which also matches the situation of

the two input tracklets. From the feature map, we can see that the

connection part of the input tracklets has strong activation, which

is critical for the connectivity measurement.

5.4 Tracking Performance

Quantitative Results on MOT16 and MOT17 Datasets. We

also provide our quantitative results on MOT16 and MOT17 bench-

mark datasets compared with other state-of-the-art methods, which

are shown in Table 1 and Table 2. Note that we use IDF1 [28] and

MOTA as major performance metrics to evaluate the reliability of

a tracker. As mentioned in [28], there are several weaknesses of

MOTA metric, which is very sensitive to the detection threshold.

Instead, IDF1 score compares ground truth trajectory and computes

trajectory by a bipartite graph, which reflects how long of an object

has been correctly tracked. As a result, IDF1 is used as the first

metric in the comparison. From the table, we can see that our IDF1

score is much higher than most state-of-the-art methods. For other

metrics shown in the table, we are also among the top rankings.

Notice that although LSST17 [5] has better performance than our

Figure 4: Two examples of the feature maps. For each exam-

ple, the top figure shows the spatial locations of the two in-

put tracklets in the 64-frame time window. The bottom fig-

ure is the corresponding feature map after the max pooling

of Conv3 with the kernel size 5, which aligns with the figure

in the top row in the time domain. We can see that the con-

nection part of the input tracklets in the time domain have

strong activation.

method, it uses extra private datasets for training the SOT sub-net

and Re-ID sub-net, which is not a fair comparison. The trackers

with extra datasets for training are listed in the top half of each table

while the trackers in the bottom half are trained purely on MOT

datasets. As shown in the table, our proposed TNT has promising

results on both MOT16 and MOT17 datasets compared with other

state-of-the-art methods.

Qualitative Results for Different Scenarios. With the trained

model on the MOT dataset, we also test our tracker on other sce-

narios without any fine-tuning. Promising results are also achieved.

Figure 5 shows some qualitative tracking results using our tracker

on other applications, like 3D pose estimation and UAV applications.

5.5 Ablation Study

Occlusion Handling. Occlusion is one of the major challenges

in MOT. Our framework can easily handle both partial and full

occlusions even with a long-time duration. As we know, when a

person is occluded, the detection as well as appearance features

are unreliable. If we discover a large change in appearance during

generation of the tracklets, we just stop detection association, even

if the detection result is available. After several or tens of frames,
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Tracker IDF1 ↑ MOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDsw. ↓ Frag ↓

GCRA [21] 48.6 48.2 12.9% 41.1% 5,104* 88,586 821 1,117

MOTDT [19] 50.9 47.6 15.2% 38.3%* 9,253 85,431* 792 1,858

LMP [36] 51.3 48.8* 18.2% 40.1% 6,654 86,245 481 595*

MCjoint [14] 52.3* 47.1 20.4%* 46.9% 6,703 89,368 370* 598

oICF [15] 49.3 43.2 11.3% 48.5% 6,651 96,515 381 1,404

NOMT [2] 53.3 46.4 18.3% 41.4% 9,753 87,565 359 504

DMMOT [48] 54.8 46.1 17.4% 42.7% 7,909 89,874 532 1,616

TLMHT [32] 55.3 48.7 15.7% 44.5% 6,632 86,504 413 642

TNT (Ours) 56.1 49.2 17.3% 40.3% 8,400 83,702 606 882

Table 1: Tracking performance on the MOT16 testing set. The first four trackers are trained with extra training data, and the

best results are marked with stars. For the rest trackers, best in bold, second best in blue.

Tracker IDF1 ↑ MOTA ↑ MT ↑ ML ↓ FP ↓ FN ↓ IDsw. ↓ Frag ↓

HAM_SADF17 [44] 51.1 48.3 17.1% 41.7% 20,967* 269,038 1,871 3,020*

EDMT17 [1] 51.3 50.0 21.6%* 36.3% 32,279 247,297 2,264 3,260

MOTDT17 [19] 52.7 50.9 17.5% 35.7%* 24,069 250,768 2,474 5,317

LSST17 [5] 62.3* 54.7* 20.4% 40.1% 26,091 228,434* 1,243* 3,726

MHT_DAM [16] 47.2 50.7 20.8% 36.9% 22,875 252,889 2,314 2,865

FWT [9] 47.6 51.3 21.4% 35.2% 24,101 247,921 2,648 4,279

jCC [13] 54.5 51.2 20.9% 37.0% 25,937 247,822 1,802 2,984

DMAN [48] 55.7 48.2 19.3% 38.3% 26,218 263,608 2,194 5,378

TNT (Ours) 58.0 51.9 23.5% 35.5% 37,311 231,658 2,294 2,917

Table 2: Tracking performance on the MOT17 testing set. The first four trackers are trained with extra training data, and the

best results are marked with stars. For the rest trackers, best in bold, second best in blue.

Figure 5: Tracking in other scenarios. (a) Tracking on cam-

pus pose estimation dataset. 3D human pose can be further

estimated using the tracking results. (b) Tracking for UAV

applications.

when a person re-appears from occlusion, a new tracklet will be

assigned to the person. Afterwards, the connectivity between these

two tracklets will be measured based on the TrackletNet to dis-

tinguish whether they are from the same person. Once they are

confirmed with the same ID, we can easily fill out the missing detec-

tions with linear interpolation. Figure 6 shows qualitative results

for handling occlusions. The first row of Figure 6 is fromMOT17-08

sequence. At frame 566, the person with a red bounding box is fully

occluded by a statue. But it can be correctly tracked after it appears

again at frame 604. The second row is one example from MOT17-

01 sequence, the person with the red bounding box goes across

five other pedestrians, but the IDs of all targets keep consistent

along the time. The last row shows the person with a yellow bound-

ing box is crossing the street from MOT17-06 sequence captured

with a moving camera. Although it is occluded by several other

pedestrians, it can be still effectively tracked in a long run.

Effectiveness of Tracklet Generation with Epipolar Geome-

try. To check the effectiveness of EG in the tracklet generation, we

run detection association on MOT17-10 and MOT17-13 because

these two sequences have large camera motion. Table 3 shows the

results with/without epipolar geometry. Two types of error rates

are evaluated, i.e., false discovery rate (FDR) and false negative rate

(FNR), which are defined as follows,

FDR =
FP

TP + FP
, FNR =

FN

TP + FN
, (8)

where TP, FP and FN represent true positive, false positive and false

negative, respectively.

From Table 3, we can see that FDR is quite small in both cases.

This means only a small portion of incorrect associations is involved

in the tracklet generation. On the other hand, FNR largely drops

with epipolar geometry adopted, especially for MOT17-13, which

means more detections are correctly associated and also reflects

the effectiveness of the proposed tracklet generation strategy.

Robustness to Appearance Features. Another major advan-

tage of our TrackletNet is the ability to address the over-fitting
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Figure 6: Occlusion handling in different MOT sequences.

Video Seq. EG Involved FDR (%) FNR (%)

MOT17-10
× 2.4 6.5

✓ 2.4 5.9

MOT17-13
× 3.6 12.4

✓ 3.4 9.7

Table 3: The effectiveness of tracklet generation with EG.

Noise (Std) Method IDF1 MOTA IDsw.

σ = 0.05
Baseline 31.7 22.4 23

TNT 34.1 22.5 20

σ = 0.1
Baseline 31.1 22.1 26

TNT 34.1 22.3 21

σ = 0.2
Baseline 20.6 19.0 80

TNT 34.0 22.5 20

Table 4: The robustness of TNT compared with the baseline

method to disturbed appearance features.

issue with a small dataset in the training. Different from [21], our

TrackletNet is trained only on MOT dataset without using addi-

tional tracking datasets, but we can still achieve very good perfor-

mance on other testing datasets. This is because of the dimension

independence of appearance features in training the network with

convolutions only conducted in the time domain. As a result, the

complexity of the network is largely reduced, which also decreases

the effect of the over-fitting.

To test the model robustness to appearance features, we disturb

the appearance features with Gaussian noise on MOT17-02 se-

quence. The compared baseline method is using the Bhattacharyya

distance of appearance features between the input pair of tracklets

as the edge cost, which is commonly used in person Re-ID tasks.

Architecture IDF1 MOTA

TNT w/o appearance features 38.8 27.6

TNT w/o location features 41.1 28.2

Original TNT 43.7 28.6

Table 5: The ablation study on the TNT architecture.

The comparison results are shown in Table 4 with Gaussian noise

using different standard deviations (Std). From the table, we can

see the baseline method degrades largely with the increasing of

noise level, while the tracking performance is not affected much

for TNT. This is because TNT measures the temporal continuity of

features as the similarity rather than using feature distance itself,

which can largely suppress unreliable detections or noise.

Ablation Study on the TNT Architecture. One major advan-

tage of the TNT architecture is to combine the location and appear-

ance features in one unified framework and extract useful features

along the temporal domain. To test the effectiveness, we change the

architecture with two variants, i.e., 1) input appearance features

without location features; 2) input location features without appear-

ance features and remove the AvgPool layer. In both variants, the

size of the fully connected layers is changing accordingly. Table 5

shows the results on MOT17-02 sequence with Faster-RCNN de-

tection as inputs. The results show that the performance degrades

compared with the original TNT, which further proves that the com-

bination of the location and appearance features is very important

in the MOT.

6 CONCLUSION AND FUTURE WORK

In this paper, we propose a novel multi-object tracking method,

called TrackletNet Tracker (TNT), based on a tracklet-based graph

model, including the tracklet generation with epipolar geometry

and the connectivity measurement by a multi-scale TrackletNet.

Our TNT outperforms most state-of-the-art methods on MOT16

and MOT17 benchmarks. We also show some qualitative results on

different scenarios and applications using TNT. Robustness of TNT

is further discussed with handling occlusions.

However, fast camera motion is still a challenge in 2D tracking.

In our future work, we are going to convert 2D tracking to 3D

tracking with the help of visual odometry. Once the 3D location of

the object in the world coordinate can be estimated, the trajectory of

the object should be much more smooth than the 2D case, resulting

in more reliable tracking.
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